C2C市场是电子商务领域一个重要的细分市场,近年来以二手闲置交易为切入点的各种C2C平台正在赢得越来越多的用户,其拥有的巨大潜力和市场规模甚至要大于现有的B2C市场。相比B2C市场,C2C市场由于市场的两端都是个人用户,其数据和用户行为都有显著的特点,例如商品信息发布的随意性、商品库存的唯一性、时效敏感性等,这些特点都给IT系统提出了问题和挑战。推荐系统作为电商的重要组成部分,在这样的场景下会遇到哪些具体挑战?又该如何应对?本次分享以转转平台为例,为大家介绍推荐系统在面对C2C市场时遇到的种种挑战,以及我们的应对策略。
演讲的开始,张相於首先对C2C市场及其特点进行了分析。他表示,C2C平台目前可能还是以交易为主,但是它本质上是连接了个人与个人,前景会非常广阔。C2C平台的意义主要为物品交易、技能交换、发现世界。主要特点包括信息发布随意性强、商品库存唯一性、时效敏感性,由于库存的唯一性,导致了发现的好东西不能推荐给更多人的现状,这和新品电商以及资讯推荐有很大不同。
面对这种状况,张相於总结出了自己对C2C市场目前面临的挑战:用户发布的数据异质性、买卖双方的时效敏感性、复杂策略下的性能压力。而面对这些挑战,转转团队提出了自己的应对策略。
用户发布的数据异质性解决方法分为两种,一种是将非结构化数据转为结构化数据,第二种是使用NLP相关技术直接处理和使用非结构化数据。面对买卖双方的时效敏感性挑战,转转通过优化改造CF算法,构建统一画像管理系统,来将各种算法进行了实时化改造。第三个挑战——复杂策略下的性能压力,通过对架构进行算能升级,实现了性能的提升了和计算能力的提升。
浏览5217次
浏览9799次
浏览3262次
浏览4208次
浏览7642次
浏览1597次
2025-01-08 昆明
2025-04-19 南京
2024-12-27 上海
2025-10-23 上海
打开微信扫一扫,分享到朋友圈