DNN是广告/推荐CTR预估的重要技术。在今年以前,企业要从LR,FM迁到DNN上时需要自己编写DNN的训练和实时预测代码。这种办法对算法团队的能力要求高,上线周期长,算法迭代的成本也高。 今年年初TensorFlow cluster模式和TensorFlow serving为企业引入DNN提供了一个便捷的方案。当然在一个开源软件和一个能够稳定运行,支持快速算法迭代的生产系统之间还是存在着一个巨大的gap的。 本次分享将介绍vivo如何填补这个gap,搭建一个每日能够稳定运行每日3000万日活,超百亿次预估的系统。其中的内容包括硬件选择(GPU or CPU,CPU内存比)、TensorFlow分布式方案的选择(Docker or Hadoop)、TensorFlow HA方案的选择、TensorFlow在训练大规模模型的坑(HDFS IO等)、如何设计网络减少DNN的线上计算量、基于serving的线上预测服务的架构等。
浏览7360次
浏览11476次
浏览8607次
浏览11434次
浏览9366次
浏览11274次
2025-06-20 深圳
2025-04-19 南京
2025-08-15 上海
2025-05-23 上海
打开微信扫一扫,分享到朋友圈